
COOPERATIVE, TRUSTED SOFTWARE REPAIR FOR CYBER
PHYSICAL SYSTEM RESILIENCY

UNIVERSITY OF VIRGINIA

JULY 2018

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2018-182

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2018-182 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S /
JOSEPH A. CAROLI

/ S /
PATRICK M. HURLEY
Work Unit Manager Acting Technical Advisor

 Computing & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUL 2018
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

FEB 2015 – JAN 2018
4. TITLE AND SUBTITLE

COOPERATIVE, TRUSTED SOFTWARE REPAIR FOR CYBER
PHYSICAL SYSTEM RESILIENCY

5a. CONTRACT NUMBER
FA8750-15-2-0075

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Westley Weimer, Stephanie Forrest, Claire Le Goues, Miryung Kim

5d. PROJECT NUMBER
T2RS

5e. TASK NUMBER
R1

5f. WORK UNIT NUMBER
KY

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia
1001 N. Emmet St.
Charlottesville, VA 22903-4833

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2018-182
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Cyber physical systems (CPS) form a ubiquitous, networked computing substrate, which is increasingly essential to our
nation's civilian and military infrastructure. These systems must be highly resilient to adversaries, perform mission critical
functions despite known and unknown vulnerabilities, and protect and repair themselves during or after operational
failures and cyber-attacks. We believe that an automated CPS repair approach that can prevent failures of related,
mission-critical systems is a necessary component to support the resiliency and survivability of our nation's infrastructure.
We developed and evaluated techniques to cooperatively repair certain general classes of cyber physical systems, and
to increase the confidence of human operators in the trustworthiness of the repairs and the subsequent system behavior.
We used embedded systems platforms, including quadrotor autonomous vehicles, to demonstrate and validate our
approach.

15. SUBJECT TERMS
Trusted and Resilient System, Automated SW Repair, Repair Quality, Repair Correctness, Trust Evidence, Runtime
Verification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
PATRICK M. HURLEY

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

18

i

Table of Contents

1 Summary .. 1

2 Introduction ... 1

3 Methods, Assumptions, and Procedures... 2

3.1 Mission Support Platform .. 2

3.2 Unified Defect Scenarios ... 3

3.3 Composable and Measurable Views of Trust .. 4

4 Results and Discussion... 4

4.1 Tool Support for Repair and Statistical Evidence of Trust .. 5

4.2 Measuring Trust via Differential Testing .. 5

4.3 Formal Proofs, Repairs, and Trust ... 7

4.4 Program Repair via Reachability ... 8

4.5 Hardware-Assisted Monitoring of Untrusted Systems .. 9

5 Conclusions .. 10

Appendix A: Publications ...11

List of Symbols, Abbreviations, and Acronyms .. 14

Approved for Public Release; Distribution Unlimited
1

 1 Summary

Cyber physical systems (CPS) form a ubiquitous, networked computing substrate, which
is increasingly essential to our nation's civilian and military infrastructure. These systems
must be highly resilient to adversaries, perform mission critical functions despite known
and unknown vulnerabilities, and protect and repair themselves during or after operational
failures and cyber-attacks. We believe that an automated CPS repair approach that can
prevent failures of related, mission-critical systems is a necessary component to support
the resiliency and survivability of our nation's infrastructure. We developed and evaluated
techniques to cooperatively repair certain general classes of cyber physical systems, and
to increase the confidence of human operators in the trustworthiness of the repairs and
the subsequent system behavior. We used embedded systems platforms, including
quadrotor autonomous vehicles, to demonstrate and validate our approach.

 2 Introduction

At a high level, for our work in Trusted Software Repair we:

• Developed a new methodology for CPS repair (i.e., improved algorithms)
o We leveraged and combined advances in the detection and application of

systematic edits, as well as in the automated repair of general software defects.

o We investigated algorithms and hardware architectures to apply repairs to

autonomous vehicles.

• Developed techniques that increase trust in a repaired system (i.e., improved trust)

o We developed lightweight techniques, including the simulation and

visualization of repairs or statistical evidence of repair quality. We initially
focused on the simulation of repairs through the construction of specialized test
inputs that highlighted the impact of a repair, as well as measuring and
predicting trustworthiness of repairs.

o We developed formal techniques, including the application of formal

specifications and the production of formal proofs associated with repairs. We
initially focused on a constructive reduction between program repair and
program reachability, ultimately allowing repair proofs to be produced by way
of proof-generating reachability analyses.

Approved for Public Release; Distribution Unlimited
2

 3 Methods, Assumptions, and Procedures

Over the course of this project, we developed techniques to improve software resilience
using program repair. Program repair techniques operate on the source or binary code of
a program and synthesize repair actions to address, fight through or otherwise overcome
defects. They typically operate by considering changes to the program, searching through
such changes or solving constraints to find them. Desired changes both defeat the bug in
question and also retain all required functionality, which is typically expressed by test
cases, pre- and post-conditions, or other formal invariants.

Our approach synthesizes repairs via software mutation. This can provide significant
resilience in the face of security attacks and latent software engineering defects.
However, the effect and merit of such repair actions may not be obvious to the human
operators who must ultimately make deployment decisions. As a result, supporting trust
in systems that make use of automated program repair is an ongoing research question.
To improve trust in software, we gathered multiple modalities of evidence (including
statistical evidence, differential testing, and formal invariants). This evidence can be
presented to human operators; at a high level it answers questions such as “in what ways
is this system similar to systems I already trust?”, “how would this system behave if I
tested it in a way similar to the way I test systems I already trust?”, and “how can I
characterize the properties that will hold as this system executes?”.

In support of this project, we also developed a unified testing platform using software-
and hardware-in-the-loop as well as a physical autonomous vehicle platform based on
the Iris+ Pixhawk, a consumer-grade uncrewed aerial vehicle (UAV). This testing platform
allowed us to evaluate our ideas on realistic software and hardware.

At a high level, our framework focus involves the development of new algorithms for
automated program repair that target CPS applications by combining insights from
mutation-based single-defect repair and also from the abstraction of systematic edits. In
addition, we developed a program repair algorithm based on a constructive reduction
between program synthesis and program reachability, since the nature of the reduction
admits proof generation. In addition, we developed methods for presenting evidence to
the user in support of trust in the system, considering three approaches to such evidence,
that explore the tradeoff between ease of use and strength of provided guarantees.

 3.1 Mission Support Platform

We tested and deployed both the Erle-Copter and Iris+ Pixhawk uncrewed aerial vehicle
systems in both indoor flight trials and tethered outdoor flights at the University of
Virignia's Milton Airfield. These vehicles use off-the-shelf open-source software such as

Approved for Public Release; Distribution Unlimited
3

ArduPilot, ArduCopter and APMrover. As a result of this testing, the Iris+ Pixhawk
emerged as a unified platform that we could use in tandem with our collaborators. We
collaborated with Raytheon BBN, the University of New Mexico, and the University of
California at Los Angeles in the construction and deployment of this experimental
prototype.

 3.2 Unified Defect Scenarios

To evaluate all of the components of our system (e.g., resilience through repair, trust
through evidence) in an end-to-end manner, we focused on a single indicative scenario.
This scenario included a simple mission (the quadcopter was instructed to visit a number
of waypoints in sequence) and a latent software bug or security attack that would prevent
mission completion. Our goal was to fight through the software bug via our automated
program repair approaches, complete the mission, and also provide evidence admitting
operator trust in the post-repair system.

We considered two disruptions to the mission: a latent (non-malicious) software
engineering defect, and a more active security attack. We describe the software bug first.
We injected an indicative defect into the codebase: it causes the platform to only turn
(yaw) in one direction under manual flight control. That is, if the operator uses a remote
controller to rotate right, it would instead rotate left. Using this injected defect, we
evaluated several techniques for measuring trust and resilience before and after
observing the bug.

We then considered autonomous flight to demonstrate a repair scenario. We evaluated
a situation in which a patrolling UAV encounters a defect, hovers in safe mode while
constructing a repair, deploys the repair to complete the mission, and shares the abstract
repair and trust-building evidence with users. We constructed a joint demonstration with
BBN, augmenting our software-level notions of trust with their flight-telemetry-level
notions of trust. We constructed flight plans based around Milton Airfield to demonstrate
the techniques we developed during the period of performance. The flight control
software automatically moves the UAV from waypoint to waypoint in sequence.

Our second mission disruption was a hostile software security attack. We introduced a
controlled attacker that compromises the vehicle when it travels closely enough to a
particular waypoint. We imagine a somewhat-remote attacker with a directional
antennae; upon entering a “cone of influence” of the attacker, an unprotected vehicle
would be subject to the control of the attacker. We proposed a model stealthy attacker
who would not want to necessarily crash or control the vehicle, but rather cause the
mission to be incomplete—e.g., to prevent it from photographing a point-of-interest near
a particular waypoint. This scenario served as the basis for a large integrated demo
involving UVA and BBN.

Approved for Public Release; Distribution Unlimited
4

Ultimately, we sought to improve UAV mission resilience and trustworthiness by (1)
learning a model of the intended mission in software and hardware simulation, (2)
measuring flight telemetry during mission execution to quantify how trustworthy the UAV’s
behavior was in relation to the modeled mission, (3) if trust is violated, force the UAV to
hover in-place (i.e., to pause) while we generate a candidate repair, (4) evaluate the
quality of the repair via simulation, and (5) deploy the new patch to the UAV, at which
point it can continue its mission.

 3.3 Composable and Measurable Views of Trust

The BBN team, operating under a separate contract, focused on a model they call
Composable and Measurable Views of Trust (CMT). Their approach provided a firm
framework into which we integrated our lightweight and formal evidence of repair quality,
as part of a whole-system trust and assurance case. In addition, the BBN team's proposal
for hardware-in-the-loop simulation helped facilitate the development of an eventual
unified experimental platform.

At a high level, BBN’s CMT framework measures flight telemetry data and compares run-
time statistics of those data against data expected based upon a trained model in
simulation. A trusted mission is simulated beforehand, helping to establish a baseline of
trustworthy telemetry data. At runtime after deployment in the field, the real flight
telemetry data is gathered and compared against the trained model culminating in a
quantifiable trust level—the more similar the runtime data is to the trained data, the more
trust we have in the mission integrity. If the runtime data drifts too far from the modeled
data, a trust violation occurs, which alerts us to begin repairing the flight software to
reestablish trust. Additionally, after the repair is generated, the CMT framework helps
reevaluate the quality of the repair in simulation. Finally, if the repair is of high enough
quality, we deploy the repair to the UAV, at which point it can continue its original mission.

 4 Results and Discussion
Our algorithm for automated software repair is known as GenProg (a generic program
repair approach based on genetic programming). When an attack or defect is detected, it
synthesizes repairs (changes to the software) to provide resiliency. It serves as both an
indicative state-of-the-art technique and a baseline. We evaluated our improvements to
it, along with evidence to promote trust, using the UAV scenario described above.

Approved for Public Release; Distribution Unlimited
5

 4.1 Tool Support for Repair and Statistical Evidence of Trust

The CMU team developed a framework and infrastructure for the GenProg-style repair of
C++ programs. It was built atop LLVM’s Clang LibTooling library, a widely-used software
infrastructure. Ultimately, GenProg is limited by its ability to rapidly localize faults. To
address this limitation, we developed BigSift, a fault localization algorithm based on delta
debugging. Using this technique, we achieved order of magnitude performance
speedups of the fault localization component compared to default GenProg. In addition,
we were able to improve the precision of fault localization by multiple orders of magnitude
compared to Apache Spark’s Titian, an off-the-shelf solution. Finally, BigSift was able to
localize fault-inducing input data within 62% of the original mission running time.
We also developed supervised models that use dynamic binary runtime signals to predict
whether a program displays the correct behavior on a given input. Our insight, akin to
anomaly intrusion detection, is that a collection of measurements regarding runtime
behavior (e.g., maximum program counter values, number of branches taken, etc.) can
help characterize correct and incorrect execution status. The goal is to develop
continuous measures of program correctness to augment traditional discrete measures
(e.g., passing or failing a test, having a proof or not). In our experiments, results for
decision tree models based on instrumented binaries (using Intel's Pin instrumentation
architecture) are promising (e.g., in terms of metrics such as precision, recall, accuracy
and F-measure). This sort of runtime monitoring admits easy integration with the BBN
CMT approach.

In practice, we found that employing CMT using a hardware-in-the-loop simulation was
more indicative of real mission data than pure software simulation. Indeed, this approach
worked well as a means of evaluating repair quality.

 4.2 Measuring Trust via Differential Testing

Code clones are a common pattern of similarity in software. When applying edits to
clones, developers often find it difficult to ensure the correctness of similar edits. Existing
techniques check syntactic consistency but do not help examine the behavioral
differences between clones. The problem is exacerbated when some clones are tested
while their counterparts are not. Since new patches are typically untested, we believe that
an operator's trust in a system could be improved by augmenting an edit (i.e., a patch or
repair) with high-quality tests. To address this issue, we developed Grafter, a differential
testing technique to identify behavioral differences between clones via code
transplantation. Informally, Grafter allows one to evaluate a new piece of code (a patch
that provides resilience) by adapting (grafting) previously-developed test cases.

Approved for Public Release; Distribution Unlimited
6

To reuse the same test on similar code, Grafter adapts one clone to the counterpart clone
by (1) identifying variations in identifier names, types, and method call targets between
clones, (2) resolving compilation errors caused by such variations using code
transformation rules, and (3) inserting stub code to transfer input data and intermediate
output values for examination. In our experiments, Grafter successfully reused tests in 17
pairs of clones from the Apache Ant project, a large indicative software codebase, without
inducing build errors, demonstrating automated transplantation capability. Grafter is
robust at detecting faults seeded by a mutation testing tool, Major, a state-of-the-art
approach for simulating indicative software defects. While a static clone bug finding tool
detects 46% of faults only, Grafter detects 85% at the state-comparison level and 52% at
the test-comparison level. Grafter reports behavioral divergence caused by calling
different methods or using different constants, which previous static clone analysis tools
fail to identify. This shows that Grafter can effectively complement existing static
techniques in examining the runtime behavior of clones. In this context, an examination
into runtime behavior via a new test corresponds to a new modality of evidence to
increase operator trust in a post-repair system.

This approach was directly evaluated on the GenProg-generated repairs for the unified
defect scenario. We first consider the source code location of the repairs in the
APMrover2 codebase. Using our code detection analyses, we found similar software
methods in the ArduCopter, ArduPlane and ArduSub codebases, which correspond to
quadrotor helicopter, fixed-wing aircraft and underwater vehicles, respectively. These
different codebases have different test suites. While statement coverage (i.e., the
percentage of statements of code that are executed by a test suite) is only 23% for the
entire system, 46% of clone groups have at least one tested clone, suggesting that
applying our method can improve trust. After identifying the similar methods in the three
other code bases, we first transplanted the defect to each of those similar methods. We
then transplanted each of the GenProg-generated repairs on top of each transplanted
defect. The final step was to evaluate each patched buggy clone with respect to its original
test suite. Our hypothesis is that repairs that pass more tests in these transplanted
settings are more likely to be of high quality, and that information about passing such
tests can be presented as trust evidence to the user.

On the unified defect scenario, this approach found that five of the twelve GenProg
patches passed all transplanted tests, and thus ranked those five patches as the most
trustworthy. Independently, we had humans carefully evaluate the produced patches.
Those human operators designated four of the candidate patches as most “correct”. All
four of the “correct” patches were included in that group of five. Thus, our approach placed
all of the highest-quality patches at the top of the ranking, supporting operator trust.

Approved for Public Release; Distribution Unlimited
7

 4.3 Formal Proofs, Repairs, and Trust

We have experimented with, and integrated, formal theorem-proving and constraint-
solving tools such as Frama-C, Why3, Z3 and CVC4 with GenProg to study the repairs
GenProg generates. In addition, we were interested in what we can learn about the formal
specification of a program given its source code and test suite. In particular, we were
interested in developing a metric for measuring populations of neutral variants of a
program.

We conducted evaluations on two small, separate programs: egcd (greatest common
divisor) and sqrt_lcm (square root of the least common multiple). Given a buggy version
of a program we first repaired it with (unmodified) GenProg. We then generated 100
neutral variants of the repair, each containing five edits. A neutral variant, from
evolutionary biology, is an individual with a different genotype but the same fitness or
relevant phenotypical behavior. In software, a neutral variant is a modified version of the
program that still passes all of the original test cases: it may be an alternate
implementation of a key algorithm, for example. Neutral variants are useful because they
represent diversity and a shifting attack surface, while maintaining required mission
functionality for end users.

These neutral variants corresponded to alternate repairs that may have different formal
properties and thus may be easier or harder for an operator to trust. We then used our
dynamic invariant detection algorithms to infer invariants automatically in each alternate
repair. Finally, we compared and contrasted the invariants found in the buggy program
with those present in the various alternate repairs.

In both cases (egcs and sqrt_lcm) there was an invariant present in the repaired version
of the program that was not present in the buggy version. In these case studies, the
invariant that describes the repair was found in 100% of the sqrt_lcm alternate repairs
and 99% of the egcd alternate repairs. We believe that the automatic identification of an
invariant that corresponds to the defect could form the basis for a stronger algorithm to
increase trust in post-repair systems. Most directly, a formal proof that an alternate repair
maintains the invariant that is statistically most common to solutions to the defect may be
of use. More abstractly, it may be possible to learn the invariant that all/most GenProg
repairs have in common and then re-synthesize a repair based just on that invariant.

These shared invariants also have the potential to provide information about test suites
and corner cases. This is related to another of our proposed evidence modalities for repair
trust: test cases or simulation runs that highlight pre- and post-repair system behavior to
help explain the effect of a repair. In the sqrt_lcm case study, while all of the alternate
repairs shared the same “repair the bug” invariant, only 74% of them shared another key
invariant that describes a corner case correctness issue of the sqrt_lcm function. Upon

Approved for Public Release; Distribution Unlimited
8

investigation, we found that the 26% of alternate repairs missing that invariant would have
been eliminated if the sqrt_lcm scenario had included a stronger test case. That is, the
repair process was unintentionally given too much freedom because of a weak test suite,
and that was discovered via an analysis of which formal invariants were maintained.
Similarly, the 1% of egcd alternate repairs that did not have “repair the bug” invariant was
not a desired fix, and a test case demonstrating that can easily be constructed using our
differential testing techniques.

We also studied a second important class of invariants. Our algorithms can use loop
invariants to differentiate among programs that use different algorithms to perform
calculations. We evaluated how well our method distinguishes between two different
implementations of the same specified program. We used strong test suites to generate
50 neutral mutants of one implementation and 50 neutral mutants of a different
implementation of the same specification for each of 5 different mathematical programs:
egcd, intdiv, lcm, prod, and sqrt. For each program, we considered the generated variants
into a single group of size 100. We then used our algorithm to partition those mutants by
loop invariants into a partially ordered set of equivalence classes. The results showed
that mutants generated from the first implementation were partitioned into disjoint
equivalence classes from mutants generated from the second implementation, for four
out of five of the programs. That is, a formal methods approach based on loop invariants
allowed us to distinguish between diverse implementations.

 4.4 Program Repair via Reachability

We developed a constructive polynomial-time reduction between template-based
program repair (e.g., GenProg, a program synthesis task that provides resiliency) and
program reachability (such as the already-existing software maintenance activities of
software model checking or test input generation). A formal reduction allows one activity
to be carried out in terms of another. That is, we developed a way to produce repairs
using previously-existing, mature, and optimized maintenance reachability tools (and
vice-versa).

The reduction is constructive in the sense of constructive logic: it provides a concrete
algorithm for converting instances of one problem to another. The primary insight is that
correctness constraints (i.e., test cases or pre- and post-conditions) in template-based
program synthesis can be encoded as conditional guards (i.e., path predicates) in
program reachability and vice-versa. The secondary insight is that unknown template
values in template- based program synthesis can be encoded as input variables in
program reachability and vice-versa.

We have developed, implemented, evaluated, and proved correct a prototype version of
this algorithm. Its performance was comparable to that of existing repair algorithms such

Approved for Public Release; Distribution Unlimited
9

as AE, SemFix and previous versions of GenProg. This new algorithm has two
implications. First, template-based program synthesis instances (i.e., program repair
problems) can be converted and passed to black-box reachability solvers (e.g., software
model checkers such as SLAM or BLAST or CVC, or reachability tools such as KLEE),
which are generally more mature and efficient. Second, and more relevant for this project,
this algorithm allows for the generation of proofs associated with program repair, through
the use of a proof-generating reachability tool.

 4.5 Hardware-Assisted Monitoring of Untrusted Systems

We proposed, and evaluated, a “dual-controller” architecture for resilience and trust in
autonomous vehicle operation. In this architecture, an untrusted locomotion controller is
more visible on the network and is responsible for mission and payload elements such as
visiting waypoints and taking and analyzing pictures. The untrusted locomotion controller
has high functionality, and may be constructed from the latest off-the-shelf and bespoke
components, but is thus more vulnerable to attack. In addition, a trusted repair controller
is responsible only for trust assessment, intrusion detection, repair construction, and
safely hovering. It involves a much smaller code base, is not visible to an outside network,
and can assume exclusive control of the sensors and actuators in the quadcopter. The
trusted repair controller becomes part of the trusted code base. Because it stands apart
from, and can take control of, the untrusted locomotion controller, it can fight through
attacks on the locomotion controller via software repair.

Our dual-controller architecture thus involves one autonomous vehicle platform that
features an untrusted, public-facing locomotion controller and a trusted repair controller.
The trusted repair controller can monitor and reflash the locomotion controller, but not
vice-versa. To help guarantee isolation, we implemented the locomotion and repair
controllers on separate CPUs.

Techniques were investigated for implementing the trusted repair controller and untrusted
locomotion controller on the same CPU using Intel’s Software Guard Extensions (SGX)
and System Management Mode (SMM).

In this setup, the autonomous vehicle CPU can be viewed as running a virtual machine
monitor or hypervisor: the locomotion software runs as a guest virtual machine and
monitoring and accounting activities run outside the guest. However, certain security
exploits can allow a malicious or compromised guest to either escape or subvert the
hypervisor. In addition, and perhaps more insidiously, attacks have been reported that
allow a guest to carefully time certain behavior so as to fool higher-level monitoring,
resource accounting, and similar anomaly intrusion detection. The former are called VM
Escape Attacks and the latter are called Resource Interference Attacks.

Approved for Public Release; Distribution Unlimited
10

We proposed Scotch, a system for transparent resource accounting that uses Intel
System Management Mode to perform monitoring, relaying data to a Secure Guard
Extensions (SGX) trusted enclave. SGX provides an enclave-based trusted execution
environment, allowing code to run in isolation: hardware support provided by Intel
prevents the untrusted code from seeing or tampering with the secure monitoring code.
In evaluations, our approach was able to detect scheduler attacks (i.e., was not fooled by
compromised systems that attempted to avoid anomaly intrusion detection). Our
approach was also low overhead, adding about 1μs per context switch, compared to 7μs
per context switch for Xen; ultimately this resulted in a 0.0033% system overhead on
CPU-bound workloads.

 5 Conclusions

Cyber physical systems (CPS) form a ubiquitous, networked computing substrate, which
is increasingly essential to our nation's civilian and military infrastructure. These systems
must be highly resilient to adversaries, perform mission critical functions despite known
and unknown vulnerabilities, and protect and repair themselves during or after operational
failures and cyber-attacks. We believe that an automated CPS repair approach that can
prevent failures of related, mission-critical systems is a necessary component to support
the resiliency and survivability of our nation's infrastructure. We developed and evaluated
techniques to cooperatively repair certain general classes of cyber physical systems, and
to increase the confidence of human operators in the trustworthiness of the repairs and
the subsequent system behavior. We used embedded systems platforms, including
quadrotor autonomous vehicles, to demonstrate and validate our approach.

First, we developed BigSift, a fault localization algorithm targeted for automated
debugging and repair. BigSift improved fault localization performance over the state of
the art. This dramatic performance increase has addressed a significant shortcoming in
repair approaches like GenProg whose search space, and thus performance, depends
directly on the ability to localize defects.

Second, we leveraged a commercially-available autonomous vehicle package to deploy
a Hardware-in-the-Loop simulation capable of assessing repairs generated to address
faulty software. Such a HIL simulation is more indicative than a pure-software simulation,
which is incapable of simulating hardware-level idiosyncrasies. Further, the HIL
simulation is integral in performing repairs during missions in deployment.

Third, we devised and proved a bidirectional polynomial time constructive reduction
between the program-reachability problem and the template-based program synthesis
problem. We took advantage of the insight that correctness constraints in template-based
program synthesis can be represented as conditional guards in program reachability. We

Approved for Public Release; Distribution Unlimited
11

have developed, implemented, evaluated, and proved correct a prototype version of this
algorithm. Its performance was comparable to that of existing repair algorithms, but it
more easily admits trust.

Fourth, we developed supervised models that use dynamic binary runtime signals to
predict whether a program exhibits correct behavior on a given input. Our insight, much
like anomaly detection, is that a collection of measurements regarding runtime behavior
(e.g., performance counters) can help characterize correct and incorrect execution status.
We developed continuous measures of program correctness to augment traditional
discrete measures. In practice, we found that employing this CMT approach using a
hardware-in-the-loop simulation was more indicative of real mission data than pure
software simulation. Indeed, this approach worked well as a means of evaluating repair
quality.

Fifth, we developed an approach to differential testing of automatically-constructed
repairs. Briefly, automatically-generated patches may be under-tested in that the test
suite may not encompass all desirable behavior. By leveraging test suites from similar
locations, we can gain trust in the automatically-generated patches. In our experiments,
this test transplantation approach provides an increased test suite that ranks correct
patches highly, facilitating operator trust.

Finally, we leverage formal invariants to determine semantic differences between
defective and patched versions of rover software. We differentiate correct repairs that
behave as intended from plausible repairs that pass the test suite but introduce
undesirable behavior. In our experimentation, desirably-correct and merely-plausible
patches were distinguishable.

In summary, we produced two live demonstrations showcasing our combination of
techniques for providing resiliency and trust in autonomous vehicle missions. We
developed a defect scenario in which a simulated attacker compromises and autonomous
vehicle, and we automatically detect and repair the issue to fight through the attack.

Appendix A: Publications

Westley Weimer, Stephanie Forrest, Miryung Kim, Claire Le Goues, Patrick Hurley:
Trusted Software Repair for System Resiliency: Dependable Systems and Networks
(DSN 2016) Industrial Track

Kate Highnam, Kevin Angstadt, Kevin Leach, Westley Weimer, Aaron Paulos, Patrick
Hurley: An Uncrewed Aerial Vehicle Attack Scenario and Trustworthy Repair
Architecture: Dependable Systems and Networks (DSN 2016) Industrial Track

Approved for Public Release; Distribution Unlimited
12

T. Le, D. Lo, C. Le Goues, and L. Grunske. A Learning-to-Rank Based Fault Localization
Approach using Likely Invariants. ACM International Symposium on Software Testing and
Analysis (ISSTA 2016)

K. Leach, C. Spensky, W. Weimer and F. Zhang. Towards Transparent Introspection. In
Software Analysis, Evolution and Reengineering (SANER) 2016.

K. Leach, C. Spensky, L. Barnes, and W. Weimer. A MapReduce Framework to Improve
Template Matching Uncertainty. In Big Data and Smart computing (BigComp) 2016.

M. Moses, G. Bezerra, B. Edwards, J H. Brown, S. Forrest. Energy and Time Determine
Scaling in Biological and Computer Designs. Philosophical Transactions of the Royal
Society B 2016.

R. van Tonder and C. Le Goues. 2016. Defending against the attack of the micro-clones.
In Proceedings of the 24th International Conference on Program Comprehension (ICPC
2016).

Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li, Tyson Condie,
Miryung Kim: Automated debugging in data-intensive scalable computing. Symposium on
Cloud Computing (SoCC) 2017

Christopher Steven Timperley, Susan Stepney, Claire Le Goues: An Investigation into the
Use of Mutation Analysis for Automated Program Repair. Symposium on Search-Based
Software Engineering (SSBSE) 2017

Kevin Leach, Fengwei Zhang, Westley Weimer: Scotch: Combining Software Guard
Extensions and System Management Mode to Monitor Cloud Resource Usage. Research
in Attacks, Instructions and Defenses (RAID) 2017

ThanhVu Nguyen, Deepak Kapur, Stephanie Forrest, Westley Weimer: Connecting
Program Synthesis and Reachability: Automatic Program Repair using Test-Input
Generation. Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
2017

J. Dorn, J. Lacomis, W. Weimer, and S. Forrest. Scalable software energy reduction.
Transactions on Software Engineering, (in press).

C. Le Goues, Y. Brun, S. Forrest, and W. Westley. Clarifications on the construction and
use of the manybugs benchmark. Transactions on Software Engineering, 43(11):1089–
1090, (2017).

Approved for Public Release; Distribution Unlimited
13

J. Ericksen, M. Moses, and S. Forrest. Automatically evolving a general controller for
robot swarms. IEEE Symposium on Artificial Life, 2017.

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan and Miryung
Kim. Are Code Examples on an Online Q&A Forum Reliable? A Study of API Misuse on
Stack Overflow. International Conference on Software Engineering (ICSE), 2018.

Elena L. Glassman, Tianyi Zhang, Björn Hartmann, Miryung Kim. Visualizing API Usage
Examples at Scale. Conference on Human Factors in Computing Systems (CHI), 2018

Just, Rene, Franz Schweiggert, and Gregory M. Kapfhammer. "MAJOR: An efficient and
extensible tool for mutation analysis in a Java compiler." Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference on. IEEE, 2011.

Approved for Public Release; Distribution Unlimited
14

List of Symbols, Abbreviations, and Acronyms

BLAST Berkeley Lazy Abstraction Verification Tool
CPS Cyber-Physical System
CMT Composable and Measurable views of Trust
CVC Cooperating Validity Checker
DIG Dynamic Invariant Generator
GenProg Generic approach to Program repair based on Genetic Programming
HIL Hardware-in-the-Loop simulation
LASE Learning and Applying Systematic Edits
MAC Media Access Control
MAVLink Micro Air Vehicle Link
UAV Uncrewed Autonomous Vehicle
SLAM Software, Languages, Abstraction, Model checking
SGX Secure Guard Extensions
SIL/SITL Software-in-the-loop simulation

